当前位置: 首页 > news >正文

织梦网站根目录在哪里seo入门培训学多久

织梦网站根目录在哪里,seo入门培训学多久,专业建设购物网站,外贸网站建设公司方案一、值迭代过程 上面是贝尔曼最优公式,之前我们说过,f(v)v,贝尔曼公式是满足contraction mapping theorem的,能够求解除它最优的策略和最优的state value,我们需要通过一个最优v*,这个v*来计算状态pi*&…

一、值迭代过程

v=\max_\pi(r_\pi+\gamma P_\pi v)

        上面是贝尔曼最优公式,之前我们说过,f(v)=v,贝尔曼公式是满足contraction mapping theorem的,能够求解除它最优的策略和最优的state value,我们需要通过一个最优v*,这个v*来计算状态pi*,而vk通过迭代,就可以求出唯一的这个v*,而这个算法就叫做值迭代。V(s)是状态s的最优价值,R是在状态s时执行动作a可获得的,y是折扣因子(衰减系数),还有状态概率矩阵P

1.1 初始化状态价值函数

        我们说过,这个函数有两个未知量。v与pi,因此要计算最优策略,我们就需要先假设一个初始值。选择一个初始值先来表示每个状态的价值。假设我们就可以设置所有价值V(s)都为0

1.2 迭代更新价值函数

        使用贝尔曼最优方程更新状态价值函数,对于与每个状态s,计算改状态下所有可能的动作a下的期望值,然后选择最大值作为新的状态价值函数。Vk是第k次迭代时s的状态,他会更新为k+1,直到k+1是最优时刻为止,具体的更新公式为:

v_{k+1}=f(v_k)=\max_\pi(r_\pi+\gamma P_\pi v_k)

        这上面就包含了所说了两个步骤

        第一步 ploicy update:\pi_{k+1}=\arg\max_\pi(r_\pi+\gamma P_\pi v_k)

        第二部 value update:v_{k+1}=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_k

        每次更新一个pik+1之后代入,就可以得到迭代后的vk+1,但是这里有个点,迭代过程中,左侧他是vk+1,所以他并不是我们所说的state value,他是一个值,

1.2.1 Ploicy update

\pi_{k+1}=\arg\max_\pi(r_\pi+\gamma P_\pi v_k)

        我们把上面的公式具体的拆成每个状态对应的element,得到

\pi_{k+1}(s)=\arg\max_{\pi}\sum_{a}\pi(a|s)\underbrace{\left(\sum_{r}p(r|s,a)r+\gamma\sum_{s^{\prime}}p(s^{\prime}|s,a)v_{k}(s^{\prime})\right)}_{q_{k}(s,a)}

        vk是已知的(假设了v0,假设现在就是v0,求pi1),那么qk(s,a)  (q1)是已知的,最优策略,就会选取qk最大时的action,其他行动为0,这样就只与q(s,a)相关,那么pik+1就知道了,就是pik+1(s)最大的一个

\left.\pi_{k+1}(a|s)=\left\{\begin{array}{ll}1&a=a_k^*(s)\\0&a\neq a_k^*(s)\end{array}\right.\right.

1.2.2 Value update

        对于其elementwise form v_{k+1}(s)=\sum_a\pi_{k+1}(a|s)\underbrace{\left(\sum_rp(r|s,a)r+\gamma\sum_{s^{\prime}}p(s^{\prime}|s,a)v_k(s^{\prime})\right)}_{q_k(s,a)}

        按照迭代顺序写出每一个值,从1.2.1,我们就可以知道,qk(s,a)是能求出的,注意一点,策略迭代里面,求出了最大的value对应的state,那么我们就知道这个pik+1,求出最后的结果

v_{k+1}(s)=\max_aq_k(a,s)

1.3 判断收敛性

        每次迭代后,检查状态价值函数的变化。如果状态价值变化小于某个阈值(例如 ϵ\epsilonϵ),则认为收敛,可以终止迭代。常见的收敛条件是:

\max_s|V_{k+1}(s)-V_k(s)|<\epsilon

通常  \epsilon  是一个小的正数,用于表示精度要求。如果状态价值函数的变化足够小,算法收敛。

        根据例子,给出一个python代码

import numpy as np# 初始化参数
gamma = 0.9  # 折扣因子
epsilon = 1e-6  # 收敛阈值
max_iterations = 1000  # 最大迭代次数
S = 4  # 状态空间大小
A = 5  # 动作空间大小# 转移概率矩阵 P(s'|s, a) - 4x5x4 的三维矩阵
P = np.zeros((S, A, S))## 顺时针行动
# 奖励函数 R(s, a) - 4x5 的矩阵
R = np.array([[-1, 4, -1, -1, -1],[-1, 4, -1, -1, -1],[4, -1, -1, -1, -1],[-1, -1, -1, -1, 1]])# 转移概率矩阵
# 动作 a=1
P[:, 0, :] = np.array([[0.8, 0.1, 0.1, 0],[0.1, 0.8, 0.1, 0],[0.2, 0.2, 0.6, 0],[0, 0, 0, 1]])# 动作 a=2
P[:, 1, :] = np.array([[0.6, 0.3, 0.1, 0],[0.1, 0.7, 0.2, 0],[0.3, 0.3, 0.4, 0],[0, 0, 0, 1]])# 动作 a=3
P[:, 2, :] = np.array([[0.7, 0.2, 0.1, 0],[0.1, 0.8, 0.1, 0],[0.2, 0.2, 0.6, 0],[0, 0, 0, 1]])# 动作 a=4
P[:, 3, :] = np.array([[0.5, 0.4, 0.1, 0],[0.2, 0.7, 0.1, 0],[0.4, 0.4, 0.2, 0],[0, 0, 0, 1]])# 动作 a=5
P[:, 4, :] = np.array([[0.9, 0.05, 0.05, 0],[0.05, 0.9, 0.05, 0],[0.1, 0.1, 0.8, 0],[0, 0, 0, 1]])# 初始化状态价值函数 V(s)
V = np.zeros(S)# 记录最优策略
pi = np.zeros(S, dtype=int)# 值迭代算法
for k in range(max_iterations):V_new = np.zeros(S)delta = 0  # 最大值变化# 遍历每个状态for s in range(S):# 对每个动作计算期望回报value = -float('inf')  # 当前最大回报(初始化为负无穷)for a in range(A):# 计算该动作下的期望回报expected_return = R[s, a] + gamma * np.sum(P[s, a, :] * V)value = max(value, expected_return)  # 保持最大的期望回报# 更新当前状态的价值V_new[s] = valuedelta = max(delta, abs(V_new[s] - V[s]))  # 计算状态价值的变化# 更新状态价值V = V_new# 如果变化小于 epsilon,认为收敛if delta < epsilon:break# 根据最优状态价值函数计算最优策略
for s in range(S):max_value = -float('inf')best_action = -1for a in range(A):# 计算每个动作下的期望回报expected_return = R[s, a] + gamma * np.sum(P[s, a, :] * V)if expected_return > max_value:max_value = expected_returnbest_action = api[s] = best_action# 输出结果
print("最优状态价值函数 V*(s):")
print(V)print("最优策略 pi*(s):")
print(pi)

MATLAB实现:

% 初始化参数
gamma = 0.9;        % 折扣因子
epsilon = 1e-6;     % 收敛阈值
max_iterations = 1000; % 最大迭代次数
S = 4;              % 状态空间大小
A = 5;              % 动作空间大小% 转移概率矩阵 P(s'|s, a) - 4x5x4 的三维矩阵
P = zeros(S, A, S);% 奖励函数 R(s, a) - 4x5 的矩阵
R = [-1, 4, -1, -1, -1;-1, 4, -1, -1, -1;4, -1, -1, -1, -1;-1, -1, -1, -1, 1];% 转移概率矩阵
% 动作 a=1
P(:, 1, :) = [0.8, 0.1, 0.1, 0; 0.1, 0.8, 0.1, 0; 0.2, 0.2, 0.6, 0; 0, 0, 0, 1];% 动作 a=2
P(:, 2, :) = [0.6, 0.3, 0.1, 0;0.1, 0.7, 0.2, 0;0.3, 0.3, 0.4, 0;0, 0, 0, 1];% 动作 a=3
P(:, 3, :) = [0.7, 0.2, 0.1, 0;0.1, 0.8, 0.1, 0;0.2, 0.2, 0.6, 0;0, 0, 0, 1];% 动作 a=4
P(:, 4, :) = [0.5, 0.4, 0.1, 0;0.2, 0.7, 0.1, 0;0.4, 0.4, 0.2, 0;0, 0, 0, 1];% 动作 a=5
P(:, 5, :) = [0.9, 0.05, 0.05, 0;0.05, 0.9, 0.05, 0;0.1, 0.1, 0.8, 0;0, 0, 0, 1];% 初始化状态价值函数 V(s)
V = zeros(S, 1);% 记录最优策略
pi = zeros(S, 1);% 值迭代算法
for k = 1:max_iterationsV_new = zeros(S, 1);delta = 0; % 最大值变化% 遍历每个状态for s = 1:S% 对每个动作计算期望回报value = -Inf; % 当前最大回报(初始化为负无穷)for a = 1:A% 计算该动作下的期望回报expected_return = R(s, a) + gamma * sum(squeeze(P(s, a, :)) .* V);value = max(value, expected_return); % 保持最大的期望回报end% 更新当前状态的价值V_new(s) = value;delta = max(delta, abs(V_new(s) - V(s))); % 计算状态价值的变化end% 更新状态价值V = V_new;% 如果变化小于 epsilon,认为收敛if delta < epsilonbreak;end
end% 根据最优状态价值函数计算最优策略
for s = 1:Smax_value = -Inf;best_action = -1;for a = 1:A% 计算每个动作下的期望回报expected_return = R(s, a) + gamma * sum(squeeze(P(s, a, :)) .* V');if expected_return > max_valuemax_value = expected_return;best_action = a;endendpi(s) = best_action;
end% 输出结果
disp('最优状态价值函数 V*(s):');
disp(V);disp('最优策略 pi*(s):');
disp(pi);

修改奖励与衰减系数可得到不同V

http://www.mnyf.cn/news/52967.html

相关文章:

  • 微信怎么做收费视频网站小说推文推广平台
  • 温州手机网站制作百度知道怎么赚钱
  • 网站引导页在线做建站公司排名
  • 保定网站建设公司网站推广的方法有哪些?
  • 企业网站设计好的缺点有哪些域名注册平台
  • 2020年楼市最新消息武汉seo首页优化技巧
  • 手机360网站seo优化公司网站搭建流程
  • 网站开发招聘信息微信小程序开发
  • 网站备案丢失付费内容网站
  • wordpress修改访问量搜索优化的培训免费咨询
  • 成品网站w灬源码伊甸杭州优化公司哪家好
  • 广告营销网站八大营销方式有哪几种
  • wordpress smtp qq百度seo优化推广
  • 江苏网站优化建站免费刷推广链接的网站
  • 做企业网站的费用google推广方式和手段有哪些
  • clh网站建设公司seo视频教程
  • 毕设用别人网站做原型百度今日排行榜
  • 免费程序网站seo主要做什么
  • 网络公司 建站 官方网站印度疫情最新消息
  • 如何做 行业社交类网站东莞全网推广
  • 地下城做心悦任务的网站市场调研怎么写
  • 网站建设 服务承诺app拉新推广项目
  • 推荐黄石网站建设基本营销策略有哪些
  • 佛系汉化组.wordpress百度优化是什么意思
  • 网站 建设淘宝网店怎么运营起来
  • 如何做服装微商城网站建设sem投放
  • 如何建开发手机网站首页app推广渠道商
  • 九星市场做网站宁波seo外包推广排名
  • asp网站抓取长沙百度首页优化排名
  • 做甜品的网站百度自动点击器