当前位置: 首页 > news >正文

使用java做直播网站有哪些成功的网络营销案例

使用java做直播网站有哪些,成功的网络营销案例,网站建设与规划学的心得体会,dw网页制作教程合集一、简介 本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。 二、蒙特卡洛积分介绍 1. 介绍 蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。 例如,对于目标积分函数: ∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x…

一、简介

本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。

二、蒙特卡洛积分介绍

1. 介绍

蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=abf(x)dx(3)

2. 证明

下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1Np(xi)f(xi))=N1i=1i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1i=NE(g(x))=N1Ng(x)p(x)dx=g(x)p(x)dx=f(x)dx(4)
求证得证。

三、蒙特卡洛积分方差

蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(cX)=c2δ2(X)δ2(aX+bY)=a2δ2(X)+b2δ2(Y)+2abCOV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))=N21i=1i=Nδ2(p(x)f(x))=N1δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。

四、蒙特卡洛积分与差分积分

蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。

http://www.mnyf.cn/news/51413.html

相关文章:

  • 怎么做类似返利网的网站产品推广营销
  • 哪个网站好chrome手机安卓版
  • 制作的大型网站多少钱公司关键词seo
  • 南方科技大学网站建设西安分类信息seo公司
  • 国内做网站个人网站免费域名注册
  • 安徽动漫公司 网站制作 安徽网新高端企业建站公司
  • wordpress编辑页面改字体颜色优化师和运营区别
  • 一站式网站搭建百度自动点击器
  • 中国做外贸的网站有哪些关键词首页排名优化
  • 个人网站怎么做微信支付优化大师app下载安装
  • 一级做爰片a视频网站试看关键词seo排名优化推荐
  • 做网站的安全证书做网站需要什么条件
  • 给人做违法网站规避ip网站查询服务器
  • 公司网站的开发和网版的重要性桂平seo快速优化软件
  • 昆明旅游网站建设百度投诉热线中心客服
  • 佛山做网站制作公司友情链接交换的作用在于
  • 电脑怎么做网站建个网站费用大概多少钱一年
  • 关于建设公司网站的申请百度知道怎么赚钱
  • 网站备案跟域名备案西安百度关键词优化排名
  • 龙岩百度推广太原seo公司
  • 成都有哪些网站建设电脑优化软件哪个好用
  • 自己做网站用什么软件下载站长之家域名查询排行
  • 济宁市中网站建设seo和点击付费的区别
  • 怎么在百度上做网站网站后端开发
  • 一个微信网站多少钱抚顺网站seo
  • 做网站容易找工作吗二十四个关键词
  • 潍坊网站建设维护天津百度网站排名优化
  • 营销型网站欣赏网站目录提交
  • 深圳电子商务网站建设app推广一手单
  • 电子商务网站项目建设阶段的划分茶叶营销策划方案