当前位置: 首页 > news >正文

新乡网站建设哪家公司好软文营销定义

新乡网站建设哪家公司好,软文营销定义,网站做动态图片大全,网站建设与管理适合女生吗有一些标准的流程可以实现对机器学习问题的自动化处理,在 scikitlearn 中通过Pipeline来定义和自动化运行这些流程。本节就将介绍如何通过Pipeline实现自动化流程处理。 如何通过Pipeline来最小化数据缺失。如何构建数据准备和生成模型的Pipeline。如何构建特征选择…

有一些标准的流程可以实现对机器学习问题的自动化处理,在 scikitlearn 中通过Pipeline来定义和自动化运行这些流程。本节就将介绍如何通过Pipeline实现自动化流程处理。

  • 如何通过Pipeline来最小化数据缺失。
  • 如何构建数据准备和生成模型的Pipeline。
  • 如何构建特征选择和生成模型的Pipeline。

机器学习的自动流程

在机器学习方面有一些可以采用的标准化流程,这些标准化流程是从共同的问题中提炼出来的,例如评估框架中的数据缺失等。在 scikit-learn中提供了自动化运行流程的工具——Pipeline。Pipeline 能够将从数据转换到评估模型的整个机器学习流程进行自动化处理。读者可以到scikit-learn的官方网站阅读关于Pipeline的章节,加深对Pipeline的理解。

数据准备和生成模型的Pipeline

在机器学习的实践中有一个很常见的错误,就是训练数据集与评估数据集之间的数据泄露,这会影响到评估的准确度。要想避免这个问题,需要有一个合适的方式把数据分离成训练数据集和评估数据集,这个过程被包含在数据的准备过程中。数据准备过程是很好的理解数据和算法关系的过程,举例来说,当对训练数据集做标准化和正态化处理来训练算法时,就应该理解并接受这同样要受评估数据集的影响。

Pipeline能够处理训练数据集与评估数据集之间的数据泄露问题,通常会在数据处理过程中对分离出的所有数据子集做同样的数据处理,如正态化处理。

下面将演示如何通过Pipeline来处理这个过程,共分为以下两个步
骤:
(1)正态化数据。
(2)训练一个线性判别分析模型。
在使用Pipeline进行流程化算法模型的评估过程中,采用10折交叉验证来分离数据集。

数据集下载

其代码如下:


import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import cross_val_score, ShuffleSplit, KFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]
# 分割数据集
n_splits = 10# 随机数种子
seed = 7kfold = KFold(n_splits=n_splits, random_state=seed, shuffle=True)steps = []
steps.append(('Standardize', StandardScaler()))
steps.append(('lda',LinearDiscriminantAnalysis()))model = Pipeline(steps)result = cross_val_score(model, X, Y, cv=kfold)print("算法评估结果:%.3f (%.3f)" % (result.mean(), result.std()))

Pipeline的各个步骤,通过列表参数传递给Pipeline实例,并通过
Pipeline进行流程化处理过程。运行结果:

算法评估结果:0.767 (0.048)

特征选择和生成模型的Pipeline

特征选择也是一个容易受到数据泄露影响的过程。和数据准备一样,特征选择时也必须确保数据的稳固性,Pipeline 也提供了一个工具(FeatureUnion)来保证数据特征选择时数据的稳固性。下面是一个在数据选择过程中保持数据稳固性的例子。

这个过程包括以下四个步骤:
(1)通过主要成分分析进行特征选择。
(2)通过统计选择进行特征选择。
(3)特征集合。
(4)生成一个逻辑回归模型。

在本例中也采用10折交叉验证来分离训练数据集和评估数据集。

代码如下:


import pandas as pd
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.feature_selection import SelectKBest
from sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import cross_val_score, ShuffleSplit, KFold
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]
# 分割数据集
n_splits = 10# 随机数种子
seed = 7kfold = KFold(n_splits=n_splits, random_state=seed, shuffle=True)features = []
features.append(('PCA', PCA(n_components=3)))
#添加select_best
features.append(('select_best', SelectKBest(k=6)))steps = []
steps.append(('feature_union', FeatureUnion(features)))steps.append(('logistic', LogisticRegression()))model = Pipeline(steps)result = cross_val_score(model, X, Y, cv=kfold)print("算法评估结果:%.3f (%.3f)" % (result.mean(), result.std()))

运行结果:
此处先创建了FeatureUnion,然后将其作为Pipeline的一个生成步骤。

算法评估结果:0.771 (0.048)

本节学习了通过 scikit-learn 中的 Pipeline 进行自动流程化数据准备和特征选择的过程。接下来将探讨针对要处理的问题,如何提高机器学习算法的准确度。

http://www.mnyf.cn/news/51201.html

相关文章:

  • 网站首页制作的过程河南网站推广公司
  • wordpress搭建的知名网站google浏览器网页版
  • 网站建设seo网络推广搜索引擎优化怎么做的
  • 视频网站如何推广搜索引擎优化seo论文
  • 山西智能网站建设制作设计网站logo
  • 开个做网站公司百度平台商家联系方式
  • 自己电脑怎么做web网站吗百度网站官网网址
  • 百度推广开户电话seo是什么服
  • 赚钱网站入口行业关键词搜索量排名
  • 网站建设科研申报书搜索引擎营销的典型案例
  • 网站界面设计需要社交媒体营销三种方式
  • 北京公司网站制作哪家专业网络营销推广平台
  • 好的网站建站公司优化设计三要素
  • 镇江网站建设价位汽车宣传软文
  • 4s店网站建设seo外包公司
  • php做网站教程seo全称是什么
  • 做网站 怎么连到数据库微博seo排名优化
  • 网站开发实现页面的跳转昆明网络推广
  • 企业logo设计在线生成seo软件简单易排名稳定
  • 护士做二类学分网站推广关键词
  • 沧州网站建设 网络服务青岛网站设计制作
  • 如何做网站的压力测试广州seo技术优化网站seo
  • 襄樊门户网站建设培训公司排名
  • 外贸网站制作策划网站域名注册
  • 网站优化有哪些武汉seo
  • 西安公司地址广州市网络seo外包
  • 怎么建设网站是什么seo排名第一
  • 如何制作h5做网站云南疫情最新情况
  • 网站内容规划企业文化墙
  • 武汉做网站建设的公司镇江百度推广