当前位置: 首页 > news >正文

怎么查网站是哪个公司做的天津seo诊断技术

怎么查网站是哪个公司做的,天津seo诊断技术,网站建设完成后如何备案,修改wordpress登录背景图用A*算法求解八数码问题 实现两种启发函数实现A*算法测试 实现两种启发函数 采取两种策略实现启发函数: 策略1:不在目标位置的数字个数策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数) # 策略1: 不在目标位置…

用A*算法求解八数码问题

  • 实现两种启发函数
  • 实现A*算法
  • 测试

实现两种启发函数

采取两种策略实现启发函数:

  • 策略1:不在目标位置的数字个数
  • 策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数)
# 策略1: 不在目标位置的数字个数,即 state 与 goal_state 不相同的数字个数
def h1(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] != goal_state[i][j] and state[i][j] != 0:distance += 1return distance# 功能性函数,用于查找给定数字 num 在 goal_state 中的坐标
def find_num(num, goal_state):for i in range(3):for j in range(3):if goal_state[i][j] == num:return i, jreturn -1, -1# 策略2: 曼哈顿距离之和
def h2(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] == 0:continueif state[i][j] == goal_state[i][j]:continuegoal_i, goal_j = find_num(state[i][j], goal_state)distance += abs(i - goal_i) + abs(j - goal_j)return distance# 测试
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]# 不在目标位置的数字:1、2、8、6,共 4 个
# 1 需移动 1 步到达正确位置
# 2 需移动 1 步到达正确位置
# 8 需移动 2 步到达正确位置
# 6 需移动 1 步到达正确位置
# 曼哈顿距离共 5 步print(h1(start_state, goal_state))  # 4
print(h2(start_state, goal_state))  # 5

实现A*算法

为了便于替换启发函数,将其作为参数传入函数:

# 定义A*算法函数
def astar(start_state, goal_state, h):'''params:start_state - 3x3 list 初始状态goal_state  - 3x3 list 目标状态h           - function 启发函数returns:expanded_nodes - 扩展节点数run_time       - 算法运行时间path           - 算法运行路径ps. 当路径不存在时,会返回 run_time = 0, path = None'''start_time = time.time()  # 算法开始open_list = [(h(start_state, goal_state), start_state)]  # 存储待扩展的节点的优先队列closed_set = set()  # 存储已经扩展过的节点的集合came_from = {}      # 记录节点之间的关系,即每个节点的父节点是哪个节点expanded_nodes = 0  # 记录扩展节点的数量while open_list:  # 带扩展节点队列不为空_, current_state = heapq.heappop(open_list)  # 弹出优先级最高的节点expanded_nodes += 1if current_state == goal_state:  # 找到目标状态# 回溯路径path = [current_state]while tuple(map(tuple, current_state)) in came_from:current_state = came_from[tuple(map(tuple, current_state))]path.append(current_state)end_time = time.time()  # 记录算法结束时间return expanded_nodes, end_time-start_time, path[::-1]closed_set.add(tuple(map(tuple, current_state)))  # 将当前节点状态加入已扩展节点集合zero_i, zero_j = find_num(0, current_state)  # 找到当前的空格坐标moves = [(0, 1), (0, -1), (1, 0), (-1, 0)]  # 四周的格子for di, dj in moves:new_i, new_j = zero_i + di, zero_j + dj  # 移动的数字if 0 <= new_i < 3 and 0 <= new_j < 3:  # 确保新位置在范围内new_state = [row[:] for row in current_state]  # 拷贝 current_statenew_state[zero_i][zero_j], new_state[new_i][new_j] = current_state[new_i][new_j], current_state[zero_i][zero_j]  # 移动空白格if tuple(map(tuple, new_state)) in closed_set:continue  # 如果新状态已经扩展过,则跳过new_cost = len(came_from) + 1 + h(new_state, goal_state)  # 计算新状态的代价heapq.heappush(open_list, (new_cost, new_state))  # 将新状态加入优先队列came_from[tuple(map(tuple, new_state))] = tuple(map(tuple, current_state))  # 更新新状态的父节点信息# 无可行解return expanded_nodes, 0, None

测试

首先,定义一个函数 print_path() 用于查看路径:

def print_path(path):step = 0for state in path:print("Step. ", step)for row in state:print(row)step += 1

设置初始状态和目标状态进行测试:

# 设置初始状态和目标状态
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法共扩展 28 个节点,耗时 0.00037217140197753906s,路径如下:
调用 h2 启发函数的 A* 算法共扩展 17 个节点,耗时 0.0002200603485107422s,路径如下:

测试鲁棒性——当可行解不存在时:

# 设置初始状态和目标状态
start_state = [[7, 8, 3],[1, 5, 2],[6, 0, 4]
]goal_state = [[1, 2, 3],[4, 5, 6],[7, 8, 9]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法无法得到可行解。
调用 h2 启发函数的 A* 算法无法得到可行解。

国科大的朋友们提交之前改一改哈!因为作者也是这么交的~

http://www.mnyf.cn/news/42584.html

相关文章:

  • 如何判断网站是响应式的还是百度seo查询
  • 网站怎么做微博链接公众号运营收费价格表
  • brandoo wordpress优化电池充电什么意思
  • 上海网站制作网站建设拼多多推广引流软件免费
  • 在线音乐网站开发百度大数据查询平台
  • 网站没有收录从哪开始做优化优化网站搜索排名
  • 北京教育学会网站建设痘痘该如何去除效果好
  • 中英文网站开发谷歌在线浏览入口
  • wordpress阿里云邮箱上海网站排名优化公司
  • 用网上的文章做网站行吗怎样在百度做广告宣传
  • 如何找专业的网站建设公司优化网站性能
  • 网络营销建设网站实训惠州网络推广
  • 欧美个人网站徐州seo代理计费
  • 室内装修设计软件免费seo软件资源
  • 游戏网站开发毕业设计中国最近新闻大事件
  • 如何做网站走查郑州网站推广
  • 谷歌优化教程seo优化要做什么
  • joomla 1.5 网站建设基础教程网站宣传的方法有哪些
  • java 手机网站建设谷歌官网
  • 餐饮营销型网站建设排名优化方法
  • 网站建设流程要多少钱如何自己建立一个网站
  • 网站建设发展方向有哪些百度软文推广怎么做
  • 做毕业网站的流程中国站长站
  • 广州口碑好的网站建设设计5g网络优化工程师
  • 网站设计排行榜好用搜索引擎排名
  • 网站和网站的app重庆公司网站seo
  • 旅游网站模板html十大免费b2b网站
  • 小偷程序做的网站能用吗实时热榜
  • 自己做网站百度能收录码搜索引擎的工作原理分为
  • 华为弹性云做网站百度平台营销宝典