当前位置: 首页 > news >正文

响应式网站好吗sem与seo的区别

响应式网站好吗,sem与seo的区别,哪有专做注册小网站的,天津环保网站建设概念YOLOv7 1 摘要2 网络架构3 改进点4 和YOLOv4及YOLOR的对比 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】【第3篇:YOLOv1——YOLO的开山之作】【第…

YOLOv7

  • 1 摘要
  • 2 网络架构
  • 3 改进点
  • 4 和YOLOv4及YOLOR的对比


YOLO系列博文:

  1. 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】
  2. 【第2篇:YOLO系列论文、代码和主要优缺点汇总】
  3. 【第3篇:YOLOv1——YOLO的开山之作】
  4. 【第4篇:YOLOv2——更好、更快、更强】
  5. 【第5篇:YOLOv3——多尺度预测】
  6. 【第6篇:YOLOv4——最优速度和精度】
  7. 【第7篇:YOLOv5——使用Pytorch框架、AutoAnchor、多尺度预训练模型】
  8. 【第8篇:YOLOv6——更高的并行度、引入量化和蒸馏以提高性能加速推理】
  9. 【第9篇:YOLOv7——跨尺度特征融合】
  10. 【第10篇:YOLOv8——集成检测、分割和跟踪能力】
  11. 【第11篇:YOLO变体——YOLO+Transformers、DAMO、PP、NAS】
  12. 【第12篇:YOLOv9——可编程梯度信息(PGI)+广义高效层聚合网络(GELAN)】
  13. 【第13篇:YOLOv10——实时端到端物体检测】
  14. 【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
  15. 【第15篇(完结):讨论和未来展望】

1 摘要

  • 发表日期:2022年7月
  • 作者:Wong Kin-Yiu, Alexey Bochkovskiy, Chien-Yao Wang
  • 论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
  • 代码:https://github.com/WongKinYiu/yolov7
  • 主要优缺点
    • 在COCO数据集上达到新的速度与精度平衡;
    • 跨尺度特征融合提高对不同尺度物体的检测能力;
    • 改进训练过程中的标签分配方式提高训练效率。

2 网络架构

2022年7月,YOLOv7由YOLOv4和YOLOR的同一组作者发布在ArXiv上。当时,它在5 FPS到160 FPS的速度范围内,在速度和精度上超过了所有已知的目标检测器。与YOLOv4一样,它仅使用MS COCO数据集进行训练,而没有使用预训练的Backbone。YOLOv7提出了一些架构上的改进和一系列bag-of-freebies,这些改进提高了准确性,但不影响推理速度,只增加了训练时间。

下图展示了YOLOv7的详细架构。

网络架构

3 改进点

YOLOv7的架构变化包括:

  • 扩展高效层聚合网络(E-ELAN):ELAN是一种通过控制最短最长梯度路径,使深度模型能够更高效地学习和收敛的策略。YOLOv7提出了E-ELAN,适用于具有无限堆叠计算块的模型。E-ELAN通过打乱和合并基数来结合不同组的特征,增强网络的学习能力,而不破坏原始的梯度路径。
  • 基于拼接模型的模型缩放:通过调整一些模型属性生成不同大小的模型。YOLOv7的架构是基于拼接的架构,在这种架构中,标准的缩放技术(如深度缩放)会导致过渡层输入通道和输出通道之间的比例变化,从而导致模型硬件利用率的下降。YOLOv7提出了一种新的缩放策略,其中块的深度和宽度以相同的因子缩放,以保持模型的最佳结构。

YOLOv7中使用的bag-of-freebies包括:

  • 计划重参数化卷积:类似于YOLOv6,YOLOv7的架构也受到重参数化卷积(RepConv)[98] 的启发。然而,他们发现RepConv中的恒等连接会破坏ResNet [61] 中的残差和DenseNet [109] 中的拼接。因此,他们移除了恒等连接,并将其称为RepConvN。
  • 辅助头的粗标签分配和主头的细标签分配:主头负责最终输出,而辅助头则帮助训练。
  • 卷积-批量归一化-激活中的批量归一化:这将批量归一化的均值和方差集成到卷积层的偏置和权重中,以便在推理阶段使用。
  • 受YOLOR启发的隐性知识
  • **指数移动平均(EMA)**作为最终推理模型。

4 和YOLOv4及YOLOR的对比

YOLOv7相对于同一组作者开发的先前YOLO模型的改进如下:

  • 与YOLOv4相比,YOLOv7参数量减少了75%,计算量减少36%,同时AP提高了1.5%。
  • 与YOLOv4-tiny相比,YOLOv7-tiny分别减少了39%的参数量和49%的计算量,同时保持了相同的AP。
  • 与YOLOR相比,YOLOv7分别减少了43%的参数量和15%的计算量,并且AP略微提高了0.4%。

在MS COCO 2017测试开发集上的评估显示,YOLOv7-E6在输入尺寸为1280像素的情况下,在NVIDIA V100上以50 FPS的速度达到了55.9%的AP和73.5%的AP50。

http://www.mnyf.cn/news/41534.html

相关文章:

  • 网站系统参数设置大数据查询个人信息
  • 怎么做网站布局互联网网站
  • 网站建设方案应该怎么做视频广告
  • 平面设计找素材的网站网站seo的方法
  • 十堰网站制作公司网络营销专业主要学什么
  • 网站建设合同属于技术合同吗免费外链工具
  • 西宁思帽网站建设关键词排名批量查询软件
  • 百度联盟广告优化网站做什么的
  • 区块链开发工程师要求免费外链网站seo发布
  • 旅游建设门户网站的方案湖南seo优化公司
  • wordpress配置gravater温州seo排名公司
  • 百科网站开发it培训学校it培训机构
  • 外贸营销网站给大家科普一下b站推广网站
  • 哪个网站用div做的好优化设计七年级上册语文答案
  • 广州做网站商城的公司百度竞价推广出价技巧
  • 全国建设工程招标信息网站广告媒体资源平台
  • 怎样做网站标题优化山东工艺美术学院网站建设公司
  • 横岗做网站公司app注册拉新平台
  • 免费空间asp网站市场营销图片高清
  • 手机网站banner代码百度seo软件优化
  • 东莞网站优化如何360网站安全检测
  • 网站开发用什么浏览器福建百度推广
  • 网站建设专业英文如何搜索网页关键词
  • 贵安新区建设管理信息网站百度移动端排名软件
  • 网站菜单分类怎么做的市场调研报告模板
  • 类似58同城网站建设多少钱江门关键词排名优化
  • 做个网站多少钱一个月百度广告推广怎么收费了
  • 哪家做网站性价比高seo网站优化收藏
  • 建网站最专业湛江seo推广外包
  • 秦都区建设局网站营销方案案例