当前位置: 首页 > news >正文

黄岩城市建设发展集团网站合肥网站seo推广

黄岩城市建设发展集团网站,合肥网站seo推广,互站网站源码,十堰网站建设是什么回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现GA-…

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测;
程序包含:单隐含层BP神经网络、双层隐含层IBP神经网络、遗传算法优化IBP神经网络、改进遗传-粒子群算法优化IBP神经网络,结果显示改进的遗传-粒子群算法优化结果更佳。运行环境2018及以上。

模型描述

BP(Back-propagation,反向传播)神经网络是最传统的神经网络。也就是使用了Back-propagation算法的神经网络。请注意他不是时下流行的那一套深度学习。要训练深度学习level的网络你是不可以使用这种算法的。原因我们后面解释。而其实机器学习的bottleneck就是成功的突破了非常深的神经网络无法用BP算法来训练的问题。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  提取权值和阈值
w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);%%  网络赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';%%  网络训练
net = train(net, p_train, t_train);%%  仿真测试
t_sim1 = sim(net, p_train);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/129869457%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

http://www.mnyf.cn/news/41370.html

相关文章:

  • 建设网站价格网站seo外包公司
  • 做啥网站比较好赚钱网站关键词排名优化软件
  • 重庆安全员c证查询官网合肥关键词排名优化
  • 云南网络公司网站建设建网站免费
  • 网站培训制度今日新闻头条10条
  • 进行企业网站建设规划免费搭建网站平台
  • 不建网站如何做淘宝客bittorrentkitty磁力猫
  • 南通网站优化公司企业建站流程
  • 怎么做苹果手机网站首页新闻类软文营销案例
  • 怎么做一元抢购网站某一网站seo策划方案
  • 网站体验分析seo网络优化培训
  • 做网站怎么加视频网店推广分为哪几种类型
  • 朱晓宇 大庆 seo 网站建设 北京刷粉网站推广马上刷
  • 建站怎么建seo还有前景吗
  • 单位做网站资料需要什么百度广告点击一次多少钱
  • 北京电商网站建设哪家好百度贴吧官网网页
  • 网站建设营销外包公司哪家好网站优化推广方案
  • 陕西省建设厅官方网站各种网站
  • 电商网站商品详情页网页广告怎么做
  • 做网页做网站的技术人才网络营销技巧
  • 绵阳做网站的公司有哪些域名买卖交易平台
  • 三网合一网站建设程序广州seo公司排行
  • 院系网站建设宁波seo推广外包公司
  • 用vue-cli做的网站今天济南刚刚发生的新闻
  • 做家庭影院的有哪些网站seo按照搜索引擎的
  • 南昌做网站开发的公司有哪些自助建站申请
  • 淘宝客网站备案教程泉州seo按天计费
  • 老河口网站定制google 优化推广
  • 只做瓶子包装设计的创意网站网站建设排名优化
  • 做网站市场分析seo整站优化方案