旅游网站建设研究综述seo优化方法
文章目录
- 参考文档
- 题目
- 线段树实现
- 单点修改,区间求值
- 模板题目
- 308. 二维区域和检索 - 可变
- 区间修改,区间求值
- 1. 掉落的方块(区间开点)
- 2. 维护序列
- 3. 一个简单的问题2
- 4. 天际线问题
- 动态开点
- 1. 区间和个数(单点修改开点)
- 问题以及注意事项
参考文档
线段树动态开点java
动态开点c++
线段树leetcode题目
题目
题目 | 知识点/注意点 | 难度 |
---|---|---|
更新数组后处理求和查询 | 线段树 | 困难 |
维护序列 | 区间修改、求和 | 困难 |
掉落的方块 | 右边区间-1 | 困难 |
leetcode 气球颜色变换 | 右边区间-1 | |
leetcode 218.天际线 | 右边区间-1 | 困难 |
leetcode 307. 区域和检索 - 数组可修改 | 下标开始的位置 | 困难 |
leetcode 315. 计算右侧小于当前元素的个数 | 保证r >= l | 困难 |
leetcode 493. 翻转对 | 离散化 / 动态开点 | 困难 |
leetcode 327. 区间和的个数 | 离散化 / 动态开点 | 困难 |
线段树实现
- 一般Push_down和push_up是需要手动实现的。
- 注意下标从1开始,build和使用的时候需要注意。
- 动态开点的时候,push_down和update会动态开点。
- 使用的时候,需要保证r >= l,否则会出现各种问题。
- 动态开点的时候,需要保证(l, r)的范围包含全部点。
单点修改,区间求值
模板题目
static const int maxn = 4e5 + 4;int sum[maxn];int n;void push_up(int u) {sum[u] = sum[u << 1] + sum[u << 1 | 1];}void build(int u, int l, int r, vector<int>&nums) {if (l == r) {sum[u] = nums[l - 1];return ;}int mid = (l + r) >> 1;build(u << 1, l, mid, nums);build(u << 1 | 1, mid + 1, r, nums);push_up(u);}void update(int u, int l, int r, int p, int x) {if (p == l && l == r) {sum[u] = x;return ;}int mid = (l + r) >> 1;if (p <= mid) update(u << 1, l, mid, p, x);else update(u << 1 | 1, mid + 1, r, p, x);push_up(u);}int query(int u, int l, int r, int L, int R) {if (L <= l && r <= R) {return sum[u];}int mid = (l + r) >> 1;int ans = 0;if (L <= mid) ans = query(u << 1, l, mid, L, R);if (R > mid) ans += query(u << 1 | 1, mid + 1, r, L, R);return ans; }
308. 二维区域和检索 - 可变
class Solution {
public:// 加是不行的。为什么呢?因为区间[l, r]上的高度不统一。static const int N = 1e6 + 10;int maxh[N], lc[N], rc[N], idx = 0, root = 0; // root应该写成全局变量,int lazy[N];// int add[N]; // 区间同时增加高度不行void push_up(int u) {maxh[u] = max(maxh[lc[u]], maxh[rc[u]]);}// 将区间,改编成add_h。如果没有区间就开点void push_down(int &u, int x) {if (!u) u = ++idx; // push_down的时候也需要创建新的lazy[u] = maxh[u] = x;}// 懒标记下推void push_down(int u) {// if (add[u] == 0) return ;if (lazy[u] == 0) return ;push_down(lc[u], lazy[u]);push_down(rc[u], lazy[u]);lazy[u] = 0; // 清除懒标记}// [L, R]增加add_x, 需要加上引用,让lc和rc指向正确位置。void update(int &u, int l, int r, int L, int R, int add_x) {if (u == 0) u = ++idx; // 给儿子创建一个新的点if (L <= l && r <= R) {push_down(u, add_x);// printf("add_x = %d\n", add_x);return ;}push_down(u);int mid = (l + r) >> 1;// printf("mid = %d l = %d r = %d, L = %d, R = %d\n", mid, l, r, L, R);if (L <= mid) update(lc[u], l, mid, L, R, add_x);if (R > mid) update(rc[u], mid + 1, r, L, R, add_x);push_up(u); // 没有传递u, 所以u不会变}// 询问,不用加引用int query(int u, int l, int r, int L, int R) {if (u == 0) return 0; // 如果没更新这个区间直接返回if (L <= l && r <= R) {return maxh[u];}push_down(u);int mid = (l + r) >> 1;int maxv = 0;// printf("%d %d %d %d %d\n", mid, l, r, L, R);if (L <= mid) maxv = query(lc[u], l, mid, L, R);if (R > mid) maxv = max(maxv, query(rc[u], mid + 1, r, L, R));return maxv;}vector<int> fallingSquares(vector<vector<int>>& positions) {vector<int>ans;for (auto vec : positions) {int l = vec[0], r = vec[0] + vec[1] - 1, z = vec[1];int cur = query(root, 1, 1e9, l, r);// printf("cur = %d\n", cur);update(root, 1, 1e9, l, r, z + cur);ans.push_back(maxh[1]);}return ans;}
};
区间修改,区间求值
1. 掉落的方块(区间开点)
大区间
少查询
动态开点: 使用指针的进行开点
离散化
int x = info[0], h = info[1], cur = query(1, 1, N, x, x + h - 1);
查询 – [x, x + h - 1]
修改 – [x, x + h - 1, cur + h]
当前的最大值就是tr[1].val
class Solution {
public:// 加是不行的。为什么呢?因为区间[l, r]上的高度不统一。static const int N = 1e6 + 10;int maxh[N], lc[N], rc[N], idx = 0, root = 0; // root应该写成全局变量,int lazy[N];// int add[N]; // 区间同时增加高度不行void push_up(int u) {maxh[u] = max(maxh[lc[u]], maxh[rc[u]]);}// 将区间,改编成add_h。如果没有区间就开点void push_down(int &u, int x) {if (!u) u = ++idx; // push_down的时候也需要创建新的lazy[u] = maxh[u] = x;}// 懒标记下推void push_down(int u) {// if (add[u] == 0) return ;if (lazy[u] == 0) return ;push_down(lc[u], lazy[u]);push_down(rc[u], lazy[u]);lazy[u] = 0; // 清除懒标记}// [L, R]增加add_xvoid update(int &u, int l, int r, int L, int R, int add_x) {if (u == 0) u = ++idx; // 给儿子创建一个新的点if (L <= l && r <= R) {push_down(u, add_x);// printf("add_x = %d\n", add_x);return ;}push_down(u);int mid = (l + r) >> 1;// printf("mid = %d l = %d r = %d, L = %d, R = %d\n", mid, l, r, L, R);if (L <= mid) update(lc[u], l, mid, L, R, add_x);if (R > mid) update(rc[u], mid + 1, r, L, R, add_x);push_up(u); // 没有传递u, 所以u不会变}int query(int &u, int l, int r, int L, int R) {if (u == 0) return 0; // 如果没更新这个区间直接返回if (L <= l && r <= R) {return maxh[u];}push_down(u);int mid = (l + r) >> 1;int maxv = 0;// printf("%d %d %d %d %d\n", mid, l, r, L, R);if (L <= mid) maxv = query(lc[u], l, mid, L, R);if (R > mid) maxv = max(maxv, query(rc[u], mid + 1, r, L, R));return maxv;}vector<int> fallingSquares(vector<vector<int>>& positions) {vector<int>ans;for (auto vec : positions) {int l = vec[0], r = vec[0] + vec[1] - 1, z = vec[1];int cur = query(root, 1, 1e9, l, r);// printf("cur = %d\n", cur);update(root, 1, 1e9, l, r, z + cur);ans.push_back(maxh[1]);}return ans;}
};
- 问题1:为什么动态开点不判断u是否为空?询问直接返回就行了,更新的时候需要判断。
- 问题2:直接把val赋值成为add,是否都是这样?还是仅仅是这个题目这样?仅仅这个题目这样。
2. 维护序列
调试技巧
- 首先判断build是否成功
- 其次判断询问是否成功
- 最后根据根节点的信息判断更新是否成功。
- push_down和push_up可以输出前后的sum[u]进行判断
3. 一个简单的问题2
java代码再acwnig的java代码上。
- long的使用
- 两个push_down
- 一个push_down是下推
- 另一个是更新区间的sum和懒标记
4. 天际线问题
class NumMatrix {
public:// 每一行使用一个线段树来维护static const int MAXN = 8e4 + 4;static const int N = 3e2 + 4;int sum[N][MAXN];vector<vector<int>>nums;int m, n;void push_up(int row, int u) {sum[row][u] = sum[row][u << 1] + sum[row][u << 1 | 1];}void build(int row, int u, int l, int r) {if (l == r) {sum[row][u] = nums[row][l - 1];return ;}int mid = (l + r) >> 1;// printf("%d %d %d\n", l, r, mid);build(row, u << 1, l, mid);build(row, u << 1 | 1, mid + 1, r);push_up(row, u);}void update(int u, int l, int r, int row, int col, int x) {if (l == r && col == l) { // l == r的时候col一定等于lsum[row][u] = x;return ;}int mid = (l + r) >> 1;if (col <= mid) update(u << 1, l, mid, row, col, x);else update(u << 1 | 1, mid + 1, r, row, col, x);push_up(row, u);}int query(int u, int l, int r, int row, int L, int R) {if (L <= l && r <= R) {return sum[row][u];}int mid = (l + r) >> 1;int ans = 0;if (L <= mid) ans += query(u << 1, l, mid, row, L, R);if (R > mid) ans += query(u << 1 | 1, mid + 1, r, row, L, R);return ans; }NumMatrix(vector<vector<int>>& matrix) {this->nums = matrix;m = nums.size();n = nums[0].size();for (int i = 0; i < m; i++) {build(i, 1, 1, n);// printf("%d\n", sum[i][1]);}}void update(int row, int col, int val) {col++;update(1, 1, n, row, col, val);}int sumRegion(int row1, int col1, int row2, int col2) {int ans = 0;col1++, col2++;for (int i = row1; i <= row2; i++) {ans += query(1, 1, n, i, col1, col2);}return ans;}
};/*** Your NumMatrix object will be instantiated and called as such:* NumMatrix* obj = new NumMatrix(matrix);* obj->update(row,col,val);* int param_2 = obj->sumRegion(row1,col1,row2,col2);*/
动态开点
1. 区间和个数(单点修改开点)
- 注意求最大和最小值的过程
- 注意前缀和为0的情况需要加入进去。而前缀和为0的时候,不用考虑query,因为一定为0,所有的点都是0。
typedef long long LL;static const int N = 4e6 + 10; // 开太小了也爆栈LL add[N];int idx = 0, root = 0, lc[N], rc[N];void push_up(int u) {add[u] = add[lc[u]] + add[rc[u]]; // 如果使用node,可能会出现点不存在的情况,但是这里并不会,因为add[0] = 0;}// 单点修改开点void update(int &u, LL l, LL r, LL p) {if (!u) u = ++idx;// add[u]++; // 直接相当于push_up了if (l == r && l == p) {add[u] += 1;return ;} LL mid = (l + r) >> 1;if (p <= mid) update(lc[u], l, mid, p);else update(rc[u], mid + 1, r, p);push_up(u);}LL query(int u, LL l, LL r, LL L, LL R) {if (!u) return 0;if (L <= l && r <= R) return add[u];LL mid = (l + r) >> 1;LL ans = 0;if (L <= mid) ans += query(lc[u], l, mid, L, R);if (R > mid) ans += query(rc[u], mid + 1, r, L, R);return ans;}int countRangeSum(vector<int>& nums, int low, int high) {int n = nums.size();LL ans = 0;vector<LL>sum(n + 1);sum[0] = 0;memset(lc, 0, sizeof lc);memset(rc, 0 ,sizeof rc);for (int i = 1; i <= n; i++) {sum[i] = sum[i - 1] + nums[i - 1];}LL minv = LLONG_MAX, maxv = LLONG_MIN;for (LL x: sum) {minv = min({minv, x, x - high});maxv = max({maxv, x, x - high});}// cout << minv << " " << maxv << endl;for (LL x: sum) {LL l = x - high, r = x - low;// cout <<x << " " << l << " " << r << endl;ans += query(root, minv, maxv, l, r);// cout << query(root, minv, maxv, l, r) << endl;update(root, minv, maxv, x);}return ans;}
};
问题以及注意事项
- 天际线和方块的问题中,为什么需要右端点-1,而不是左端点 + 1呢?
- 具体的调试技巧,看上面的维护序列。
- 注意使用的时候,区间从1开始,