当前位置: 首页 > news >正文

网站用什么做备份网站设计公司排行榜

网站用什么做备份,网站设计公司排行榜,关于建设公司网站的请示,网站做的最好的公司文章目录 参数设置align_dynamic_thing:为了将动态物体的点云数据从上一帧对齐到当前帧流程旋转函数平移公式filter_points_in_ego:筛选出属于特定实例的点get_intermediate_frame_info: 函数用于获取中间帧的信息,包括点云数据、传感器校准信息、自车姿态、边界框及其对应…

文章目录

    • 参数设置
    • align_dynamic_thing:为了将动态物体的点云数据从上一帧对齐到当前帧
      • 流程
    • 旋转函数
    • 平移公式
    • filter_points_in_ego:筛选出属于特定实例的点
    • get_intermediate_frame_info: 函数用于获取中间帧的信息,包括点云数据、传感器校准信息、自车姿态、边界框及其对应的实例标识等
    • intermediate_keyframe_align 函数用于将前一帧的点云数据对齐到当前帧的自车坐标系中,并返回对齐后的点云数据和标签。
    • prev2ego 函数用于将前一帧的点云数据转换到当前帧的自车坐标系中。该函数考虑了旋转和平移,并可选地应用速度和时间差来进行额外的位移校正。
    • nonkeykeyframe_align 函数用于将非关键帧的点云数据对齐到当前帧的自车坐标系中
    • 将前一帧的点云数据对齐到当前帧的自车坐标系中
    • 为未标记的中间点云数据搜索标签

必要的包

from nuscenes.nuscenes import NuScenes
from pyquaternion import Quaternion
from nuscenes.utils.data_classes import LidarPointCloud
import numpy as np
from open3d import *
from nuscenes.utils.data_io import load_bin_file
from nuscenes.utils.geometry_utils import points_in_box
import os.path as osp
from functools import partial
from utils.points_process import *
from sklearn.neighbors import KDTree
import open3d as o3d
import argparse

初始化全局字典,用于存储中间静态点、姿态和标签

INTER_STATIC_POINTS = {}
INTER_STATIC_POSE = {}
INTER_STATIC_LABEL = {}

参数设置

dataroot: 数据集的根路径,类型为字符串,默认值为 ‘./project/data/nuscenes/’。

  • save_path: 保存路径,类型为字符串,默认值为 ‘./project/data/nuscenes//occupancy2/’,该参数是可选的。
  • num_sweeps: 每个示例的激光雷达扫描次数,类型为整数,默认值为 10,该参数是可选的。
def parse_args():parser = argparse.ArgumentParser(description='Data converter arg parser')parser.add_argument('--dataroot',type=str,default='./project/data/nuscenes/',help='specify the root path of dataset')parser.add_argument('--save_path',type=str,default='./project/data/nuscenes//occupancy2/',required=False,help='specify sweeps of lidar per example')parser.add_argument('--num_sweeps',type=int,default=10,required=False,help='specify sweeps of lidar per example')args = parser.parse_args()return args

align_dynamic_thing:为了将动态物体的点云数据从上一帧对齐到当前帧

def align_dynamic_thing(box, prev_instance_token, nusc, prev_points, ego_frame_info):if prev_instance_token not in ego_frame_info['instance_tokens']:box_mask = points_in_box(box,prev_points[:3, :])return np.zeros((prev_points.shape[0], 0)), np.zeros((0, )), box_maskbox_mask = points_in_box(box,prev_points[:3, :])box_points = prev_points[:, box_mask].copy()prev_bbox_center = box.centerprev_rotate_matrix = box.rotation_matrixbox_points = rotate(box_points, np.linalg.inv(prev_rotate_matrix), center=prev_bbox_center)target = ego_frame_info['instance_tokens'].index(prev_instance_token)ego_boxes_center = ego_frame_info['boxes'][target].centerbox_points = translate(box_points, ego_boxes_center-prev_bbox_center)box_points = rotate(box_points, ego_frame_info['boxes'][target].rotation_matrix, center=ego_boxes_center)box_points_mask = filter_points_in_ego(box_points, ego_frame_info, prev_instance_token)box_points = box_points[:, box_points_mask]box_label = np.full_like(box_points[0], nusc.lidarseg_name2idx_mapping[box.name]).copy()return box_points, box_label, box_mask

流程

  1. 检查实例标识:
    if prev_instance_token ∉ ego_frame_info[‘instance_tokens’]:
    box_mask = points_in_box(box, prev_points[:3, :])
    return (0, 0, box_mask)

  2. 计算边界框内的点:
    box_mask = points_in_box(box, prev_points[:3, :])
    box_points = prev_points[:, box_mask]

  3. 获取上一帧边界框的中心和旋转矩阵:
    C_prev = box.center
    R_prev = box.rotation_matrix

  4. 将点旋转到原点并平移到当前帧的中心:
    box_points = R_prev^-1 * (box_points - C_prev)

  5. 获取目标边界框的中心和旋转矩阵:
    target = ego_frame_info[‘instance_tokens’].index(prev_instance_token)
    C_ego = ego_frame_info[‘boxes’][target].center
    R_ego = ego_frame_info[‘boxes’][target].rotation_matrix

  6. 平移到当前帧的中心并再次旋转:
    box_points = box_points + (C_ego - C_prev)
    box_points = R_ego * box_points

  7. 过滤当前帧边界框内的点:
    box_points_mask = points_in_box(ego_frame_info[‘boxes’][target], box_points[:3, :])
    box_points = box_points[:, box_points_mask]

  8. 生成点云数据的标签:
    box_label = full_like(box_points[0], nusc.lidarseg_name2idx_mapping[box.name])

  9. 返回结果:
    return (box_points, box_label, box_mask)

numpy.full_like()是根据现有数组的形状和数据类型来创建新数组,而numpy.full()则需要手动指定形状和数据类型。

旋转函数

def rotate(points, rot_matrix: np.ndarray, center=None) -> np.array:"""Applies a rotation.:param rot_matrix: <np.float: 3, 3>. Rotation matrix."""if center is not None:points[:3, :] = np.dot(rot_matrix, points[:3, :]-center[:, None]) + center[:, None]else:points[:3, :] = np.dot(rot_matrix, points[:3, :])return points

在这里插入图片描述

平移公式

def translate(points, x: np.ndarray) -> np.array:"""Applies a translation to the point cloud.:param x: <np.float: 3, 1>. Translation in x, y, z."""for i in range
http://www.mnyf.cn/news/32594.html

相关文章:

  • 会做网站的公司江东怎样优化seo
  • 网站建设赚钱流程可以免费发布广告的平台有哪些
  • linux建设网站php打开提示404百度退推广费是真的吗
  • 什么做直播网站好html网页制作动态效果
  • 企业网站的建立步骤百度网盘客服电话人工服务
  • 如何做网站赚流量钱广州seo网络优化公司
  • 怎样优化网站关键词国际新闻界期刊
  • 品牌型网站设计新乡seo推广
  • 努比亚网站开发文档google seo 优化教程
  • wordpress zhai主题企业网站seo优化公司
  • 域名到期网站长春网站建设团队
  • 电子商务工资多少钱一个月南城网站优化公司
  • 贵阳餐饮设计公司官网上海网站seo公司
  • 个人网站免费注册微博推广
  • wordpress 不显示文章图片seo网站诊断方案
  • 杭州响应式网站网络营销介绍
  • 网页游戏排行榜第一网络优化初学者难吗
  • 如何做好品牌网站建设百度推广的效果
  • 做鸡直播网站aso排名服务公司
  • 南戴河区网站建设哪家好友情链接网站免费
  • 做网站能自己找服务器吗鄂州seo
  • 网站备案时间查询上海seo
  • 精品网文吉林网站seo
  • 南通市网站建设网络推广平台网站推广
  • 湛江seo计费管理windows 优化大师
  • 代理网站地址seo技术服务外包公司
  • 科大讯飞哪些做教学资源的网站一份完整的营销策划方案
  • dw做网站简单首页西安网站到首页排名
  • 天行健公司网站建设商品热搜词排行榜
  • 传统网站开发sem培训学校