当前位置: 首页 > news >正文

雄安网站建设机构整站排名优化品牌

雄安网站建设机构,整站排名优化品牌,asp网站怎么做404页面,企业网站托管套餐文章目录 70. 爬楼梯 (进阶)322. 零钱兑换二维数组滚动数组 279. 完全平方数 70. 爬楼梯 (进阶) 题目链接 | 理论基础 以完全背包的思路来解题,正如组合总和 Ⅳ 中提到的一样。在本题中,先背包后物品的思路就显得非常合理明显了。 本题中的物品就是可…

文章目录

  • 70. 爬楼梯 (进阶)
  • 322. 零钱兑换
    • 二维数组
    • 滚动数组
  • 279. 完全平方数

70. 爬楼梯 (进阶)

题目链接 | 理论基础

以完全背包的思路来解题,正如组合总和 Ⅳ 中提到的一样。在本题中,先背包后物品的思路就显得非常合理明显了。

本题中的物品就是可以行走的步数 [1, 2],重量是 n,可以重复选取步数,求走到第 n 层有多少种走法。这样抽象过后,就和组合总和 Ⅳ 一样是求排列了。

  1. dp 的下标含义:dp[j] 是到达第 j 层的方法数
  2. dp 递推公式:dp[j] += dp[j - i]
  3. dp 数组的初始化:根据递推公式可以得知 dp[0]=1 是必须的,也符合前两层的结果,其他的初始化为 0。
  4. dp 遍历顺序:需要得到排列结果,先背包后物品(在爬楼梯的背景下就很合理)
  5. 举例推导:省略
class Solution:def climbStairs(self, n: int) -> int:choices = [1, 2]# dp[i] represents the number of ways to reach position idp = [0] * (n+1)dp[0] = 1# dp formulafor j in range(n+1):for i in range(len(choices)):if j >= choices[i]:dp[j] += dp[j-choices[i]]return dp[-1]

本题看上去是个简单的爬楼梯,但实际上是个简单的完全背包,重要的是可以考验对物品和背包的遍历顺序的理解。事实上,以后遇到排列的完全背包问题,以爬楼梯的思路来理解会非常有效!

322. 零钱兑换

题目链接 | 理论基础

本题和 零钱兑换II 非常相似,依然是典型的完全背包问题。区别在于,零钱兑换II 需要组合数,这就规定了滚动数组的遍历顺序;本题只需要最小组合数,而不在乎得到该最小数的方式是组合或是排列。

二维数组

  1. dp 数组的下标含义:dp[i][j],使用硬币 [0, i] 组成金额 j 所使用的最小硬币数

  2. dp 递推公式:dp[i][j] = min(dp[i-1][j], dp[i-1][j-coins[i]] + 1)

  3. dp 的初始化:本题的大坑

    • 二维数组的初始化中 ,coins[0](i=0)和 j=0 的情况是比较容易想到的:
      • 只能使用一个硬币时,只有该硬币面值的整数倍金额 j 会初始化为 j // coins[0]
      • 当金额为 0 的时候,不管有多少硬币可以使用,都只需要 0 个硬币即可达成金额 0
    • 那些不需要特殊初始化的位置才是需要小心的!
      • 由于题目要求“无法构成金额的情况返回 -1”,自然想到应该优先把所有值初始化为 -1。这么做就会有下面第一种复杂的解法,要考虑 min() 中每个元素为 -1 的情况,堪称崩溃。
      • 由于 min() 的特性,最好的初始化应该是 float('inf'),这样不会影响后续的递推,也不会影响初始化,只需要在最后检查结果是否是 float('inf') 即可。
      • 如果被题目默认的初始化条件所迷惑,而没有认识到 min() 的需求,那就会踩坑(虽然也能解决问题)。
  4. dp 的遍历顺序:由于不需要排列,二维数组可以解决,物品和背包的顺序无所谓。

  5. 举例推导:coins = [1, 2, 5], amount = 5

    012345
    1012345
    2011223
    5011221
class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# dp[i][j] represents the smallest number to make j using coins [0, i]dp = [[-1] * (amount + 1) for _ in range(len(coins))]for j in range(amount + 1):if j % coins[0] == 0:dp[0][j] = j // coins[0]for i in range(len(coins)):dp[i][0] = 0# dp formulafor i in range(1, len(coins)):for j in range(amount + 1):if j < coins[i]:dp[i][j] = dp[i-1][j]else:if dp[i-1][j] >= 0 and dp[i][j-coins[i]] >= 0:dp[i][j] = min(dp[i-1][j], dp[i][j-coins[i]] + 1)elif dp[i-1][j] == -1 and dp[i][j-coins[i]] >= 0:dp[i][j] = dp[i][j-coins[i]] + 1elif dp[i-1][j] >= 0 and dp[i][j-coins[i]] == -1:dp[i][j] = dp[i-1][j]else:dp[i][j] = -1return dp[-1][-1]

正确初始化的解法

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# dp[i][j] represents the smallest number to make j using coins [0, i]dp = [[float('inf')] * (amount + 1) for _ in range(len(coins))]for j in range(amount + 1):if j % coins[0] == 0:dp[0][j] = j // coins[0]for i in range(len(coins)):dp[i][0] = 0# dp formulafor i in range(1, len(coins)):for j in range(amount + 1):if j < coins[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = min(dp[i-1][j], dp[i][j-coins[i]] + 1)return dp[-1][-1] if dp[-1][-1] != float('inf') else -1

滚动数组

之前做过的几道完全背包,先物品后背包是求组合种类问题,先背包后物品是求排列种类问题。如上所述,本题只要求满足金额的硬币数,不在意满足金额的结果的顺序,所以物品、背包的遍历顺序都可以。

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# dp[i][j] represents the smallest number to make j using coins [0, i]dp = [-1] * (amount + 1)dp[0] = 0# dp formulafor i in range(len(coins)):for j in range(amount + 1):if j >= coins[i]:if dp[j] >= 0 and dp[j-coins[i]] >= 0:dp[j] = min(dp[j], dp[j-coins[i]] + 1)elif dp[j] == -1 and dp[j-coins[i]] >= 0:dp[j] = dp[j-coins[i]] + 1elif dp[j] >= 0 and dp[j-coins[i]] == -1:dp[j] = dp[j]else:dp[j] = -1return dp[-1]

正确初始化的解法

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# dp[i][j] represents the smallest number to make j using coins [0, i]dp = [float('inf')] * (amount + 1)dp[0] = 0# dp formulafor i in range(len(coins)):for j in range(amount + 1):if j >= coins[i]:dp[j] = min(dp[j], dp[j-coins[i]] + 1)return dp[-1] if dp[-1] != float('inf') else -1

279. 完全平方数

题目链接 | 理论基础

本题乍一看和完全背包没什么关系。将完全平方数 1,4,9 … 看作是物品,n 看作是背包容量的话,就又是一道标准的完全背包问题:求填满背包使用的最少物品数。抽象过后,本题和上一题几乎是一模一样。

唯一的区别在于,由于 n 的范围很大,在 n 取较大值的时候会耗时较长。二维数组会直接超时,而滚动数组也需要直接利用更新范围来减少遍历时间。这也是第一道二维数组无法解题的背包问题。

class Solution:def numSquares(self, n: int) -> int:# dp[j] represents the number of ways to make jdp = [float('inf')] * (n+1)dp[0] = 0max_sqrt_num = int(sqrt(n))# dp formulafor i in range(max_sqrt_num):for j in range((i+1) * (i+1), n+1):dp[j] = min(dp[j], dp[j-(i+1)*(i+1)] + 1)return dp[-1]
http://www.mnyf.cn/news/16617.html

相关文章:

  • wordpress英文企业网站模板江西百度推广公司
  • dede制作动态网站模板下载西安seo网站推广优化
  • 有什么好的网站推荐一下苏州百度推广排名优化
  • 个人在线网站推广手机怎么创建网站
  • 国外网站做盗版宁波seo外包服务平台
  • 表格网站源码优化网站价格
  • 长春网站排名厉害的seo顾问
  • 注册网站免费注册邮箱安卓优化大师老版本
  • 网站负责人核验照片百度seo搜搜
  • 北京做网站电话整站优化提升排名
  • 建设视频网站设计意义产品关键词
  • 秦皇岛制作网站济南seo整站优化招商电话
  • 在线资源搜索神器南京seo公司教程
  • 网上订酒店 网站开发关键词竞价广告
  • 运城做网站百度推广代理商利润
  • aspnet网站开发教程seo标题优化裤子关键词
  • 杭州知名的企业网站建设策划如何优化网络速度
  • 网站的建设方面商品推广软文范例100字
  • 东莞网站建设设头条站长平台
  • 北京南站到北京西站推广普通话宣传海报
  • 商城网站建设运营方案迅雷磁力链bt磁力天堂下载
  • 欧美网站特点网站建设方案设计书
  • 珠海响应式网站建设费用什么叫外链
  • 国外做自动化网站烘焙甜点培训学校
  • 百度小程序如何做网站中国广告网
  • 长春网站建设小程序网络营销的营销策略
  • 汽车交易网站系统建设网页模板设计
  • 家政公司简介模板手机优化大师官方版
  • 如何做网站的埋点关键词在线查询
  • 淘宝店铺网站策划书网络引流怎么做啊?