当前位置: 首页 > news >正文

高端网站建设设计公司排名北京网站推广公司

高端网站建设设计公司排名,北京网站推广公司,网络优化软件,在哪做网站目录 一、解析树 二、树的遍历 一、解析树 我们可以用解析树来表示现实世界中像句子或数学表达式这样的构造。 我们可以将((73)*(5-2))这样的数学表达式表示成解析树。这是完全括号表达式,乘法的优先级高于加法和减法,但因为有括号,所以在…

目录

一、解析树

二、树的遍历


一、解析树

我们可以用解析树来表示现实世界中像句子或数学表达式这样的构造。

我们可以将((7+3)*(5-2))这样的数学表达式表示成解析树。这是完全括号表达式,乘法的优先级高于加法和减法,但因为有括号,所以在做乘法前必须先做括号内的加法和减法。树的层次性有助于理解整个表达式的计算次序。在计算顶层的乘法前,必须先计算子树中的加法和减法。

 构建解析树的第一步是将表达式字符串拆分成标记列表。需要考虑4种标记:左括号、右括号、运算符和操作数。我们知道,左括号代表新表达式的起点,所以应该创建一颗对应该表达式的新树。反之,遇到右括号则意味着到达该表达式的终点。我们也知道,操作数既是叶子节点,也是其运算符的子节点。此外,每个运算符都有左右子节点。

有了上述信息,便可以定义以下4条规则:

(1)如果当前标记是(,就为当前节点添加一个左子节点,并下沉至该子节点;

(2)如果当前标记在列表['+','-','/','*']种,就将当前节点的值设为当前标记对应的运算符;为当前节点添加一个右子节点,并下沉至该子节点;

(3)如果当前标记是数字,就将当前节点的值设为这个数并返回至父节点;

(4)如果当前标记是),就跳到当前节点的父节点。

追踪父节点的方法:在遍历这棵树时使用栈记录父节点。每当要下沉至当前节点的子节点时,先将当前节点压到栈中。当要返回当前节点的父节点时,就将父节点从栈中弹出来。

解析树构建器代码如下:

from pythonds.basic import Stack
from pythonds.trees import BinaryTreedef bulidParseTree(fpexp):fplist=fpexp.split()pStack=Stack()eTree=BinaryTree('')pStack.push(eTree)currentTree=eTreefor i in fplist:if i=='(':currentTree.insertLeft('')pStack.push(currentTree)currentTree=currentTree.getLeftChild()elif i not in '+-*/)':currentTree.setRootVal(eval(i))parent=pStack.pop()currentTree=parentelif i in '+-*/':currentTree.setRootVal(i)currentTree.insertRight('')pStack.push(currentTree)currentTree=currentTree.getRightChild()elif i ==')':currentTree=pStack.pop()else:raise ValueError("Unknown Operator: "+i)return eTree

计算二叉解析树的递归函数:

def evaluate(parseTree):opers={'+':operator.add,'-':operator.sub,'*':operator.mul,'/':operator.truediv}leftC=parseTree.getLeftChild()rightC=parseTree.getRightChild()if leftC and rightC:fn=opers[parseTree.getRootVal()]return fn(evaluate(leftC),evaluate(rightC))else:return parseTree.getRootVal()

二、树的遍历

我们将对所有节点的的访问称为“遍历”,共有3种遍历方式,分别为前序遍历、中序遍历和后序遍历

前序遍历:

在前序遍历中,先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。

中序遍历:

在中序遍历中,先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。

后序遍历:

在后序遍历中,先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。

遍历树的代码格外简洁,这主要是因为遍历是递归的。

将前序遍历算法实现为外部函数:

def preorder(tree):if tree:print(tree.getRootVal())preorder(tree.getLeftChild())preorder(tree.getRightChild())

将前序遍历算法实现为BinaryTree类的方法:

def preorder(self):print(self.key)if self.leftChild:self.left.preorder()if self.rightChild:self.right.preorder()

后序遍历函数:

def postorder(tree):if tree!=None:postorder(tree.getLeftChild())postorder(tree.getRightChild())print(tree.getRootVal())

后序求值函数:

def postordereval(tree):opers={'+':operator.add,'-':operator.sub,'*':operator.mul,'/':operator.truediv}res1=Noneres2=Noneif tree:res1=postordereval(tree.getLeftChild())res2=postordereval(tree.getRightChild())if res1 and res2:return opers[tree.getRootVal()](res1,res2)else:return tree.getRootVal()

中序遍历函数:

def inorder(tree):if tree!=None:inorder(tree.getLeftChild())print(tree.getRootVal())inorder(tree.getRightChild())

修改后的中序遍历函数,它能还原完全括号表达式:

def printexp(tree):sVal=""if tree:sVal='('+printexp(tree.getLeftChild())sVal=sVal+str(tree.getRootVal())sVal=sVal+printexp(tree.getRightChild())+')'return sVal

 

http://www.mnyf.cn/news/47554.html

相关文章:

  • 珠海网站制作费用济南网站制作平台
  • 富顺网站建设seo顾问什么职位
  • 公安网站备案 时间北京网络营销
  • aspnet网站开发实例谷歌seo靠谱吗
  • 太原做网站需要多少钱页面关键词优化
  • 深圳知名网站建设公司山东疫情最新消息
  • b2b交易型网站建设方案优化师的工作内容
  • 网站建设教程大全 百度网盘招聘网站排名
  • 在线视频播放网站怎么做的百度账号快速注册入口
  • 吉首公司网站找谁做举三个成功的新媒体营销案例
  • 网站建设南昌网页设计基础
  • javaweb视频网站开发seo网站优化培训公司
  • 设计素材网站线上nba排行榜最新排名
  • 网站建设报价如何做营销推广
  • 涿州做网站建设数字营销服务商seo
  • 教育房地产 网站建设今天上海最新新闻事件
  • 吉林省软环境建设办公室网站网络营销的真实案例分析
  • 怎样才能申请网站如何快速优化网站排名
  • 做街机棋牌上什么网站发广告seo有些什么关键词
  • 文艺小清新ppt模板seo优化轻松seo优化排名
  • 建个人网站需要哪些长沙百度推广排名优化
  • 云端互联网站建设线上推广的渠道和方法
  • asp个人网站seo是什么意思的缩写
  • 淮安网站定制长沙官网seo
  • 制作的网站百度信息流投放技巧
  • asp个人网站怎么建设数据分析培训机构哪家好
  • 网站动态背景欣赏腾讯云1元域名
  • 网站设计开发中的具体步骤优化方案电子版
  • 金融门户网站模版今日新闻国家大事
  • 电商网站用php做的吗高报师培训机构排名