当前位置: 首页 > news >正文

网站开发职业定位湘潭网站制作

网站开发职业定位,湘潭网站制作,wordpress主题 翠竹林,微信小程序开发的优势本文将介绍如下内容: 什么是Lora高效微调的基本原理LORA的实现方式LORA为何有效? 一、什么是LoRA LoRA 通常是指低秩分解(Low-Rank Decomposition)算法,是一种低资源微调大模型方法,论文如下: LoRA: Low…

本文将介绍如下内容:

  • 什么是Lora
  • 高效微调的基本原理
  • LORA的实现方式
  • LORA为何有效?

一、什么是LoRA

LoRA 通常是指低秩分解(Low-Rank Decomposition)算法,是一种低资源微调大模型方法,论文如下: LoRA: Low-Rank Adaptation of Large Language Models。
使用LORA,训练参数仅为整体参数的万分之一、GPU显存使用量减少2/3且不会引入额外的推理耗时。

二、高效微调的基本原理

以语言模型为例,在微调过程中模型加载预训练参数 Φ 0 \Phi_0 Φ0进行初始化,并通过最大化条件语言模型概率进行参数更新 Φ 0 \Phi_0 Φ0+ Δ Φ \Delta\Phi ΔΦ,即:
在这里插入图片描述

这种微调方式主要的缺点是我们学习到的参数增量 Δ Φ \Delta\Phi ΔΦ的维度和预训练参数 Φ 0 \Phi_0 Φ0是一致的,这种微调方式所需的资源很多,一般被称为full fine-tuing
研究者认为能用更少的参数表示上述要学习的参数增量 Δ Φ \Delta\Phi ΔΦ= Δ Φ ( Θ ) \Delta\Phi(\Theta ) ΔΦ(Θ),其中 ∣ Θ ∣ |\Theta| ∣Θ∣<< ∣ Φ 0 ∣ |\Phi_0| Φ0,原先寻找 Δ Φ \Delta\Phi ΔΦ的优化目标变为寻找 Θ \Theta Θ
在这里插入图片描述
这种仅微调一部分参数的方法称为高效微调。针对高效微调,研究者有很多的实现方式(如Adapter、prefixtuing等)。本文作者旨在使用一个低秩矩阵来编码 Δ Φ \Delta\Phi ΔΦ相比于其他方法,LORA不会增加推理耗时且更便于优化。

三、LORA的实现方式

1、Instrisic Dimension

我们先思考两个问题:为何用数千的样本就能将一个数十亿参数的模型微调得比较好?为何大模型表现出很好的few-shot能力?
Aghajanyan的研究表明:预训练模型拥有极小的内在维度(instrisic dimension),即存在一个极低维度的参数,微调它和在全参数空间中微调能起到相同的效果。
同时Aghajanyan发现在预训练后,越大的模型有越小的内在维度,这也解释了为何大模型都拥有很好的few-shot能力。

2、LORA

在这里插入图片描述
受instrisic dimension工作的启发,作者认为参数更新过程中也存在一个‘内在秩’。对于预训练权重矩阵 W 0 W_0 W0 ∈ \in R d ∗ k \mathbf{R^{d*k}} Rdk,我们可以用一个低秩分解来表示参数更新
Δ W \Delta W ΔW,即:
在这里插入图片描述
训练过程中冻结参数 W 0 W_0 W0,仅训练A和B中的参数。如上图所示,对于 h = W 0 x h=W_0 x h=W0x,前向传播过程变为:

在这里插入图片描述

四、LORA为何有效?

通过大量的对比实验,作者证明了LORA的有效性,但是作者希望进一步解释这种从下游任务中学到的低秩适应(low-rank adaptation)的特性。为此,作者提出了三个问题:

1、LORA应该作用于Transformer的哪个参数矩阵?

在这里插入图片描述
从上图我们可以看到:

  • 将所有微调参数都放到attention的某一个参数矩阵的效果并不好,将可微调参数平均分配到 W q W_q Wq W k W_k Wk的效果最好。
  • 即使是秩仅取4也能在 Δ W \Delta W ΔW中获得足够的信息。

因此在实际操作中,应当将可微调参数分配到多种类型权重矩阵中,而不应该用更大的秩单独微调某种类型的权重矩阵。

2、LORA最优的秩r是多少?

在这里插入图片描述
从上述实验结论我可以看到,在秩小到1或者2的时候,LORA的仍有不错的效果。因此作者假设:更新参数矩阵 Δ W \Delta W ΔW可能拥有极小的‘内在秩’。为求证此假设,作者需要计算不同秩对应的子空间之间的重叠程度,如下:
对于 r = 8 r=8 r=8 r = 64 r=64 r=64 两个秩,首先进行奇异值分解得到两个右奇异矩阵 U A r = 8 U_{Ar=8} UAr=8 U A r = 64 U_{Ar=64} UAr=64。作者希望得到: U A r = 8 U_{Ar=8} UAr=8 的top-i奇异向量有多少被包含在 U A r = 64 U_{Ar=64} UAr=64的top-j个向量中。可用格拉斯曼距离来表示这种子空间之间的相似关系:
在这里插入图片描述
在这里插入图片描述
从上图可以看出 r = 8 r=8 r=8 r = 64 r=64 r=64中的top奇异向量重叠得最多(颜色越小表示相似程度越高),也就是说top奇异向量的作用最大,其他的奇异可能会引入更多的噪声。这证明了更新参数矩阵
Δ W \Delta W ΔW存在极小的‘内在秩’。

3、参数增量 Δ W \Delta W ΔW W W W的关系?

为揭示微调过程的内在原理,作者进行了如下实验:
在这里插入图片描述
从上图的对比结果,作者发现三个现象:

  • 相比于随机矩阵, Δ W \Delta W ΔW W W W有强关联。 从表中的 0.32 > > 0.02 0.32>>0.02 0.32>>0.02可以看出。
  • Δ W \Delta W ΔW仅放大了 W W W中任务相关的特征, 并未放大头部特征。我们知道F范数的平方等于奇异值和的平方,因此从表中的 0.32 < < 21.67 0.32<<21.67 0.32<<21.67可以看出 Δ W \Delta W ΔW W W W的头部奇异向量并无关联。
  • r等于4时, Δ W \Delta W ΔW的放大系数已经很大了。 计算 6.91 / 0.32 ≈ 21.5 6.91/0.32 \approx21.5 6.91/0.3221.5可知 Δ W \Delta W ΔW能将 W W W 中相关的特征向量放大21.5倍。

因此我们可以得到结论:在训练过程中,低秩的适应矩阵 Δ W \Delta W ΔW仅仅放大了对下游任务有用的特征,而不是预训练模型中的主要特征。

参考:

  • LORA微调系列(一):LORA和它的基本原理
http://www.mnyf.cn/news/46722.html

相关文章:

  • 做电商能赚钱吗seo如何优化关键词排名
  • 专业网站建设公司排名湖南正规关键词优化首选
  • 现代网站建设公司数字化营销怎么做
  • 网站建设 设计广州百度seo
  • 网页制作下载链接宁波网站制作优化服务
  • 企业展厅设计施工一体化广州seo工程师
  • 上海黄浦 网站建设最佳的资源搜索引擎
  • 虎门专业网站建设中公教育培训机构官网
  • 网站建设运营公司推荐青岛网络优化代理
  • wordpress 模板层次结构信息图怎么优化自己网站
  • 厦门正规网站建设多少seo怎么做?
  • 做网站需要准备资料广州seo团队
  • 襄阳高新区建设局网站网络推广具体内容
  • 小说网站怎么做词长春头条新闻今天
  • 怎么做营销型网站设计网络热词2021流行语
  • 用ps怎么做网站app下载
  • 如何在网站上做推广app001推广平台官网
  • 外贸网站建设系统新闻发布稿
  • 企业网站建设知乎企业建设网站公司
  • 数据录入网站开发西安建站推广
  • 一个人做网站原型网页代码模板
  • 包头做网站的公司招聘信息网络营销推广方案策划
  • 深圳网站建设迅美响应式网站建设
  • 如何做自己的论坛网站关键词推广优化排名品牌
  • 官方网站怎么备案seo优化招商
  • 外贸网站代码营销网站做的好的公司
  • 如何做网站的信息分类seo优化就业前景
  • 线上推广活动策划方案seo如何优化排名
  • 网站文字规划没被屏蔽的国外新闻网站
  • 在百度上做网站怎么做什么网站可以发布广告