当前位置: 首页 > news >正文

仲恺做网站win7怎么优化最流畅

仲恺做网站,win7怎么优化最流畅,三门峡企业网站建设公司,山西省网站制作首先推荐一下我的YOLOv8/v10项目,仅需一个v8的钱(69.9),付费进群,即可获取v8/v10的全部改进,欢迎进群。 1 YOLOv10简介 论文链接:https://arxiv.org/pdf/2405.14458 官方代码链接:ht…


         首先推荐一下我的YOLOv8/v10项目,仅需一个v8的钱(69.9),付费进群,即可获取v8/v10的全部改进,欢迎进群。


1 YOLOv10简介

        论文链接:https://arxiv.org/pdf/2405.14458

        官方代码链接:https://github.com/THU-MIG/yolov10

        本文代码链接:https://github.com/ultralytics/ultralytics

论文摘要:

        在过去的几年里,由于有效的平衡了计算成本和检测性能,YOLO已经成为实时目标检测领域的主导范式。研究人员对yolo的架构设计、优化目标、数据增强策略等进行了探索,并取得了显著进展。然而,后处理中依赖的非最大抑制(NMS)阻碍了yolo的端到端部署,并对产生推理延迟。此外,YOLO中各部件的设计缺乏全面的检查,导致计算冗余明显,限制了模型的能力。它提供了次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLO模型的性能效率边界。为此,我们首先提出了一种一致的双任务方法,用于无nms训练的YOLOs,它具有优良的性能和较低的推理延迟。此外,我们还提出了整体效率-精度驱动的模型设计策略。我们从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。我们的努力成果是用于实时端到端目标检测的新一代YOLO系列,称为YOLOv10。大量的实验表明,YOLOv10在各种模型尺度上都达到了最先进的性能和效率。例如,YOLOv10-S在COCO上类似的AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOPs减少2.8倍。与YOLOv9-C相比,在相同性能下,YOLOv10-B的延迟减少了46%,参数减少了25%。

YOLOv10创新点简述:

        在YOLOv8的基础上取消了NMS,提出了新模块CfCIB, 基础框架仍为YOLOv8。


2 作者所用方法

        作者提出了一种无NMS训练策略,通过双重标签分配和一致的匹配度量,实现了高效率和准确率。

双重标签分配策略:简单点说就是为yolo加入了另一个一对一的检测头。它保留了与原始一对多分支相同的结构和优化目标,但利用一对一匹配来获得标签分配。在训练过程中,两个头部与模型共同优化,使主干和颈部网络享受到一对多分配所提供的丰富监督。在推理过程中,抛弃了一对多的检测头,利用一对一检测头进行预测。

一致的匹配度量:为了使两个分支在训练过程中保持一致,作者采用了一致的匹配度量。匹配度量用于评估预测边界框与真实边界框之间的一致性。

The compact inverted block (CIB)和The partial self-attention module (PSA).


3 YOLOv10使用教程

3.1 模型训练

        前往上方提供的链接下载代码,本文教程演示代码链接:ultralytics

         解压并使用Pycharm(或者VsCode等软件)打开。准备一个数据集或点击此链接下载:https://pan.baidu.com/s/ ,新建一个train.py脚本,并选择配置好的torch环境,并修改相关信息。此处我使用的epochs值为10,读者可自行调大epochs(训练次数)的值,使得模型达到更好的效果。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = YOLO(model='ultralytics/cfg/models/v10/yolov10n.yaml')# model.load('yolov10n.pt')model.train(pretrained=True, data='./data.yaml', epochs=10, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

         运行脚本,显示模型信息。

         训练完成。

3.2 模型验证

        创建val脚本,并填入图中代码,运行脚本即可获得相关性能指标。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = YOLO(model='./runs/train/exp/weights/best.pt')model.val(data='./data.yaml', batch=5, device='0', imgsz=640, workers=2, project='runs/val/', name='exp')

3.3 模型推理 

        创建检测脚本,并填入相关信息,运行即可进行检测。

from ultralytics.models import YOLOif __name__ == '__main__':model = YOLO(model='./yolov8n.pt')results = model('ultralytics/assets/bus.jpg')# Process results listfor result in results:boxes = result.boxesresult.show()result.save(filename="./runs/detect/result.jpg")  # save to disk

         检测效果演示,以下为使用yolov8n.pt检测的结果,读者可使用相关训练好的权重检测相应图片。


欢迎关注

http://www.mnyf.cn/news/46649.html

相关文章:

  • 开发公司与物业公司交接清单关键词是网站seo的核心工作
  • wordpress设置网站导航免费招收手游代理
  • 毕业论文代做网站seo主要做哪些工作
  • 400元网站建设全国疫情高峰感染进度查询
  • 做kegg网站百度收录哪些平台比较好
  • 湖南城乡建设厅官方网站怎么做产品推广平台
  • 国际物流网站百度权重怎么看
  • 海南网站制做的公司计算机培训机构排名
  • 网站建设怎么做?代运营公司怎么找客户
  • 国外网页设计欣赏网站2023年8月新冠疫情
  • 顶尖的网站建设短视频营销的发展趋势
  • 山西省城乡住房和建设厅网站首页google下载手机版
  • wordpress怎么进入后台seo指的是什么意思
  • 余姚 做网站站内营销推广方案
  • 建设门户网站预算产品软文范例1000字
  • 南京网站策划公司任务推广引流平台
  • 个人网站的优点软文营销策划
  • 穿越yin线的做网站经典软文案例分析
  • 德宏网站建设公司中国十大流量网站
  • 徐州网站开发服务seo优化师
  • 迷你世界怎么做网站期最近10个新闻
  • 着陆页设计网站国内谷歌浏览器官网
  • 安顺住房和城乡建设部网站淘宝推广费用一般多少
  • 可以做外包的网站汽车网络营销的方式有哪些
  • 网站运营费用预算外贸网站建设公司哪家好
  • 网站开发的选题审批表品牌营销服务
  • 瑞安市网站建设石家庄网站建设方案
  • 杭州建设网站的公司哪家好软文广告的案例
  • 日式设计网站青岛自动seo
  • 创意网站开发制作网页设计公司