当前位置: 首页 > news >正文

响应式网站模仿学seo哪个培训好

响应式网站模仿,学seo哪个培训好,wordpress title插件,韩国做hh网站NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比 目录 NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介…

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

目录

    • NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元融合注意力机制时间序列预测,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

模型描述

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。

下面是这个模型的主要组成部分和工作流程的简要说明:

数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。

卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。

双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。

多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。

北方苍鹰算法优化:北方苍鹰算法是一种基于群体智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用北方苍鹰算法算法,可以提高模型的性能和收敛速度。

融合和预测:最后,通过融合CNN、BiGRU和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。

需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。

程序设计

  • 完整源码和数据获取方式NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
endpFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );fit(i ) = fobj(  x(i,:) ) ;end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.mnyf.cn/news/37580.html

相关文章:

  • 东莞做网站it s软文推广是什么
  • 只做鞋子的网站自己的网站怎么做seo
  • 中牟网站建设网络营销ppt
  • 做淘宝网站最有效的网络推广方式
  • 安徽定制型网站建设推广郑州抖音seo
  • 网站开发用不用写交互网站seo优化包括哪些方面
  • 佛山网站建设在哪广州seo外包多少钱
  • asp.net 跳转别的网站百度推广开户联系方式
  • 做考勤的网站大一html网页制作作业简单
  • 山西网站建设企业seo手机关键词网址
  • 建设网站优化网盘手机app官网下载
  • 做模具的都有什么网站整合营销方案案例
  • 系统花钱做任务的小说魅网站小学生简短小新闻十条
  • 礼品行业网站建设短视频培训
  • 做网站怎么拿框架的原代码珠海seo关键词排名
  • 网站源码下载了没有管理后台百度信息流广告怎么收费
  • 做网站需要找什么客户dsp投放方式
  • 烟台市铁路建设管理局网站百度推广平台有哪些
  • 网站制作公司武汉北京百度seo价格
  • 做电子商务网站 语言网站广告费一般多少钱
  • 昆明做网站推网站免费推广方式
  • 电商网站建设需求分析 实例题seo信息优化
  • 网站排名下降原因西安seo网络优化公司
  • 现在公众号做电影网站的发展爱站网关键词查询网站的工具
  • 做企业网站需要人维护么aso优化服务站
  • 免费网页设计作品深圳搜索引擎优化推广
  • 哪家网站建设做的好做百度推广效果怎么样
  • 做美陈网站网络营销师证书怎么考
  • 渝中网站公司网站seo是什么意思
  • 旅游网站怎样做网络宣传百度快照seo